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At the present time there are suffig¢iently many works in which questions of
the stabllity of systems with parameters which are random functions of an
independent variable are considered (such as [1 to 13], for example). Sta-
bility in the mean-square 1s examined in many of them.

The following question was also examined in [5 and 6]. Let some solution
of a second order differential equation with constart coefflcients increase
wlthout limit together with the argument. Is it possible to achieve bound-
edness of a solution with the same initial conditions 1n the mean-square if
a random function o(¢) 1s appended to one of the coefficlents of this equa-
tion? The correct answer, obtained in [6%, in which the function qa(z)
satisfies the same demands as in [5] (a(¢) describes Gaussian white noise,
say), turns out to be negative,

In [10], in particular, the system of equations
dx;

i = Z (Cij - Tij ) x; @
=1

where the ey, are constents and the fx,(t) random functions, was analyzed.
It turned out that this system 1s not stable in the mean 1f the functlons
r,l(t) describe Gaussian white noise and the corresponding deterministic
system 1s unstable.

The following problem 1s posed herein.
1, Let some deterministic system be described by Equation
u™ (1) 4 a, w4 . L au ) = f (1) (r>1,0<t<<o0)  (1.1)

in which the coefficients a,, @,,...,8,_, are real constants, the function
7(¢) 1is real and y
1@<

N
m (>0, x > 0) (1.2)

The quantities ¥, x and p are independent of ¢ .
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Replacement of some coefficient 4; ==0,1,..., n—2) by e. — a,({), where
a,(¢) 18 a random function, leads to Equation ’ 4
n) -1 .
W o)+ o u VG ) o agu(t @) = () + ;) w1, o)
G=01,...,n—2) (1.3)

The following is assumed relative to the random function a, (¢) .
1) The autocorrelation range G Of the random process a,{¢) 1s zero (¥)
2) (&, (> =0, et 4 1)) = $8(v (—00 < ¢, T 008 ;= const >0)
Here and henceforth, the angle brackets denote the average over the ensem-

l()le. Condigions (1) and (2) are an idealization of the following conditions
as @& - 0 ),

la) The random process qa,(?) has an autocorrelation range ¢ > O ;
a

2a) <a; ()» =0, § {a; () ay(t 4 7)> dv = 8y, P[ le; ()1 < ;j_ ]:1
Za a

where 7; = const >0, P 1s probability; — oo < ¢t <<oo.

It is necessary to clarify the relation between the asymptotes of any
particular solution y(t) of (1.1) and the mean square (uf (¢, aj)) of the
solutic(m)u(t; a,) of (1.2), obtalned under the same initial conditions as
for wul(t).

The obtained results reduce to the following two theorems.

Theorem 1.1 . If the real part of at least one characteristic
number of (1.1) is positive, then the mean square <ul? (¢, a.)> of any particu-
lar solution of (1.3) (with the random function q,lt) possessing properties
(1) and (2)) increases without 1imit with ¢ for values S, .

Theorem 1.2 . If the characteristic numbers 1\, of (1.1) are
such that Re A, <0 (i = 1,...,n), then the mean square J{u? St, aj)> of any
particular solution of (1.3) (with the random function q,(t) possessing
properties (1) and (2)) will increase unboundedly with ¢ 1if and only if

. foo .
(=1 R ¥ dz ]—l

S;> 55 —[ sni \ L (oL, (—a) >0

Here ,()) is the characteristic polynomial of (1.1) (**)

In case §,< .S',‘t and x> O
lim <u? (¢, a)> = 0 for t —o00

To prove these Theorems let us derive an expresslon for <(u? (t, a’.)>,

2, In (1.3) let the random function q,(t) satisfy the conditions (1a)
and (2a) from Section 1. Equation (1.3) 18 equivalent to the relation 2.1)

¢ . 1 . eP (-0}
ult, a) = u(t) + gwu —9a;(@u (g a)dg, Wi—q =77 ‘ . %
0 o

Y-t

*) A quantity g > O such that for any fixed ¢ and |7| > g, the random
variables a,{t) and a,(t +7) are independent is called the autocorrelation

range.
#%) Por example, for the second order equation
u (2, ag) + 2Bu (2, ag) + @ [1 + 25 ()] u(t, 29) =0 (B >0)

the necessary and sufficient condition for boundedness of any particular
solution in the mean is §, <48/, which agrees completely with [(e6].
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Here u(t¢) is any particular solution (*) of (1.1) and w(¢ —4) 1s a
Cauchy function; y > Rep , where j ’1is the zero of the characteristic poly-
nomial [,{(\) of (1.1) which has the greatest real part {or one of such

zeroes)., As is known, the function W (t)e ™ 0 as ¢t - « no matter what
the y > Re .

The integral equation
t
u? (1, @) = u? (t)+SW"’ (t — g)o;(q) ul? (g, ) dg G=01..,n—2 (22
0
is easily obtained from (2.1).
As is known, the solution of this equation has the form

(o0}
uld (2, ay) = 2 Ug(t, ), U, (t, @) = u® @
8=0
Ut (e, aj) = S Wi, (y) o, () & (v, dy (s=1,2,...
P!

Here y = {y;,.+.,%} 1s an s-dimensional vector; T, a domain in
g-dimensional space divided up by means of the inequalitles

2Nz 2Y>0
o, ()= (y1) &;(¥a)- - -5 (¥,), W) = Wt —y) WO (g, —yg) . .o WO (3, ,—,)

Substitution of {2.2) for ul? (s, @;) 1in (2.1) leads to the relation

oo
ut, ) = 3 V(%)
8=0
where

Veway=u(®,  V,ta)={c,@a,0uPe)dy  (=12..)
Ty
Coe) =W (t—w)

G =We—ypW @ —wW—y) .. . Wy, —y) =23...)
Hence

ey =u )+ 3 <V, a)V, (b o) (s40>2). (2.3)

8, 6=0

This expression is simplified substantially if the autocorrelation range
6 approaches zero, 1.e., if we go from conditions (1a), (2a) of Section 1 to
conditions (1) ana (2).

The following must here be kept in mind.

a) Each term of the sum in (2.3) 1s some integral. Those terms for which
n =g+ 0 18 odd vanish together with a4 , This follows from estimates, by
the method expounded in [11], of the sum of the volumes of those parts of
the domain of integration TI', where the integrand is not zero.

b) The contribution in any of the remaining terms, from integration over
those portlions of the domain I, which do not coarrespand to grouping of the
arguments in twos (#*), vanishes together with g . This follows from

*) Por simplicity, the initial conditions for u(t) are assumed to be deter=
ministic.

**) Grouping of the arguments in twos 1s the grouping of s + ¢ arguments
W, 99) (Y3, ¥4) - - . (Ygp0-1> Yseo) BUCH that

yu+l—yﬂk+i<a» yak+2—yak+a>a (k=0. 1'..',826_1)
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estimates of the sum of the volumes of such portions of T,, made by the
same method.
c¢) The contribution from integration over the portions:-of Iy correspond-

ing to such a grouping of the arguments in palrs, for which at least one pair
of arguments colncides with the arguments of some of the functions

WD g~y ) G=0,1,...,n—2),

also approaches zero. This latter 1s the result of an exact calculation of
such a contribution when passing to the properties (1) and (2) as a limit,
if it is here taken into account that VVU)(0)== g for j=0,1,...,n—2

Thus only those terms of the sum in (2.3) for which g = ¢ do not vanish
together with g . In evaluating them it 1s necessary to integrate only over
those portlons of the domain T, which correspond to grouping of the argu-
ments in pairs, and moreover, such that none of the pairs coincides with the
arguments of any of the functions i),

Then in the 1limit as a - O the function <u2(t,aﬁ) takes the form

o) =0+ 35" 16, @ u? ey (2.4)

n=1 Ty

It 1s seen already from this formula that 1f y?(t) increases without
limip together with ¢ , then (uz(t,aﬂ) willl also increase without limit,

It is easy to note that each term of the series in the last formula 1s a
convolution, which permits the summation of this series by using the Laplace
transform. Indeed

L e} =L{u (@)} +L WO} {[D@P Y $ @ wD @grp
n=1

where the symbol [{...} denotes the Laplace transform. Hence

<u? (¢, uj)> = (2.5)
_ A P L@ @)+ 8@ )L (D @1 — L (WD 91 L @) Plap
2ni ne 1 —s,L {[WU) 1%

Here p,> Rep,, where p, are singularities of the integrand.

For S,= O the right side of (2.5) becomes equal to u2(t) (1t should be
recalled that u(t) is any particular soluticn of (1.1) and ult,a,) 1s the
solution of (1.3) obtained under the same 1nitial conditions as for ult)

3. Formula (2.5) permits the solution of the question of the boundedness
of the functlion (u? (¢, aﬁ) by using el=mentary considerations.

It follows from (2.5) that 1if S,> 0 and the characteristic numbers ),
of (1.1) are such that ReA;<{0 (i=1,...,n), then the zeroes of the deno-
minator are the only poles ot the integrand in the half-plane Rep>0 .
Indeed, the functions

LW 0y, L{u® P G=0,1,...,n—2)

then have no poles in the half-plane Re p > 0 : for L {HVU)(QJQ this fol-
lows from the properties of the Cauchy function, for {hﬁn IR from the
boundedness by the conditlon on the function 1) 0<t <o)

Hence, Equation
@; (p) = L{WD ()2} = 5,7 G=01,....,n—2) (3.1)

should be examined and the locatlion of 1its roots on the p plane should be
investigated as & function of the quantilty i > 0 and the values of the
characteristic numbers i, (¢ = 1,...,n) of i.1).

It is easy to see that for any values of the numbers A; (— oo < Re A, < o0)
the function 6,(?) has the following properties.
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1. The function &, (P) 1s defined and analytic in the half-plane
Re p > 2 Re p, where A 1s the characteristic number cf (1.1) which has the
greatest real part.

2. The function ¢,(p) 1s real on the real half-axis p > 2 Re 4 .
3. The function &,{P) -0 as p = += .
4. If p>2Re p, then 1im ¢,(P) =+ as p = 2 Re A .

5. If Re A, <0 (¢ =1,...,n) , then the greatest absolute value of &,(p)
in the closed right half-plane is §,(0)> 0 .

The last property follows from the fact that

oo
; (p) = { W9 pera
0
(since the function W@ (1) 1s real, 0 <t << o0).

It follows from properties (2), {4), (1) and (3) that 1f Re p > 0O , then
at least one root of (3.1) (*) lies on the half-axis P > 2 Re p . The nume-
rator of the integrand in (2.5) has the form N

8; Liw2 ()} L {{u? (1)]2} ¢

l.e. 1s greater than zero for real P , for the values of p which are zeroes
of the denominator. This proves Theorem 1.1.

If Red; < O0(i=1,...,n), then at least one root of (3.1) 1s found in
the half-plane Rep > 0 if and only if
§;> 8% = @71 (0) (3.2)

In fact it follows from property (5) that for §,< §* Equation (3.1) can-
not have any roots in the closed right half-plane. If Sy > s, then from
properties (5), (2), (1) and (3) of the function #,(p) results the exlstence
of at least one root of (3.1) on the half-axis p > 0O

As is known, if
ReAi<0 (i:‘ir---vn):lj(t)E<
the followlng estimate is valid

N
m P>0x>00<t << 00)

. C.
{u(J)(l)[<_..._’—_EMj(t) G=0,1,...,n—2;0<t<00)
1 + =)®

The quantities (, are independent of ¢ .

If we put #,?(y,) into (2.4) in place of [u' ()], then the new series
obtalned as result of such a substitution converges to some function Fy t;
such that F; (1) > < (g, a)> (0 <t < oo). Each term of the series for F,(t
(Just as the terms of the series for <u2(},@;)}) ) 1s a ccavolution, which

permits using the Laplace transformation to obtain the equ_aiity
L{ME O} ¢85 (L W20} L (M2 0} — LW @PL (M ()
1= 8 LwY R}
(J=01,...,n—2)

L{F; ()} =

Applying the inversion formula to r{F,(¢)]} and investigating the defor-
mations of the contour of integration admissibl for » = 0 and x> O ,we

may arrive at the following conclusion: If Rel <0 (i=1,... n), the
function y(t) satisfies condition (1.2) and S;<S*(G=0,1,...,n—2)
then ’

supy < (L a)y <Loc (20,0 < ¢ < o0), lim, ¢u? (t, ) =0 (»>0,t—o00)

*) ELvidertly this same deduction 1s valld also for Re A =0 1f f1s less
than the multiplicity of the characteristic number 5 or Imp#£0 .
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Theorem 1.2 1s proved.

Let us evaluate the quantity Q,Sog which appears in (3.2). According to
the definition of the functions &,(p) and W(tg (Pormulas (3.1) and (2.1))

% _ y+ico it

®, (0) .:\ (W9 (1)]2 dt, Wy =L % ze dz
A 2mi L (2)
0 Y—i00
G=0,1,...,n—=2 ReALy<0)

After having substituted the expression for DV”)(Q in the first formula
and having integrated with respect to ¢ , the quantity Q,(O) 18 expressed
by Formula

D, (0) ==

Yit+ico Yp+i00
@

\ dzy g dz, 212y ' (1"=0, 1,...,n—2)
Y1-i0o Y,-ico Ly () Ly, (22) (2 + 29) Re A <11, 1. << 0

Having evaluated the inner integral and permitted vy, to approach zéro,
we finally obtain . ic0 .
1y b3
‘I’j ©0) = (—1) & z9 dz

2m L,(z)L,(—2)
- 100
It i1s easy to see that the integrand takes on only real values on the
contour of integration.

The author 1s grateful to G.la. Liubarskiil for useful nints and assistance
in editing the paper.
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